

IMPLEMENTATION OF HiQDT SMART DIGITAL RS-485 MODBUS RTU SENSORS WITH CUSTOMER PLC

There exists three different implementation approaches for interfacing the smart digital HiQDT RS-485 MODBUS RTU sensor slaves with your PLC depending upon what is most suitable for your project requirements. Each implementation approach requires progressively more work for implementation and accordingly directly accesses more capabilities.

GENERAL NOTE 1:

For communication to be successful all MODBUS devices on the network must use the same baudrate and have a unique node address assigned. If the baudrate or node of the HiQDT sensor to be interfaced is not known, please use the free of charge Windows software to determine the current baudrate and node address and modify these parameters should it be necessary to ensure a valid & unique node address setting on the network as well as matching baudrates.

GENERAL NOTE 2:

All HiQDT smart digital sensors use the standard RS-485 MODBUS RTU communication configuration of 8-bit, even parity with 1 stop bit. If any other MODBUS devices are sharing the network with the HiQDT must share these settings to ensure proper communication. Please see HiQDT installation guide for additional recommendations & details about commissioning, calibration and troubleshooting.

IMPLEMENTATION APPROACH #1

Only the core process values are obtained through the PLC with all other tasks such as viewing sensor analytics and diagnostics as well as performing calibrations being performed by either the ASTI supplied free of charge Windows software or else the battery powered handheld communicator.

IMPLEMENTATION APPROACH # 2

The core process values are obtained as well as other all information that can be accessed through calls that require only reading values from the sensor (anything that does not require writing values to be performed). This allows for not just the core process values to be obtained but also for all analytic and diagnostic information as well. The calibrations are obtained for information purposes but not modified with this approach. In this approach any tasks that require writing to the sensor such as changing user adjustable parameters and calibrations being performed by either the ASTI supplied free of charge Windows software or else the battery powered handheld communicator.

IMPLEMENTATION APPROACH # 3

This implementation approach includes all functionality that requires both reading and writing to the sensor. As such this level of implementation means that only the PLC is required to successfully use the sensor in the field with all tasks being performed by the PLC with the sole exception of changing the baud rate and node address which must always be performed by the ASTI supplied free of charge Windows software.

INITIAL SETUP:

The wo parameters that MUST be setup during commissioning by the free of charge ASTI supplied Windows software for the HiQDT sensors are the node address and baudrate. By default, the baudrate is 19,200 kbps and the node address is the same as the sensor type (see MODBUS function code 03 index 35 for details). Best practice to write the sensor type, node address & baudrate on the sensor label for ease of ongoing maintenance. Sensors can be ordered with customized default baudrate and node address upon request (contact factory for ordering information for custom parameter setups).

SAMPLING RATES:

The internal sampling rate of HiQDT sensors is 4 Hz (250ms) with a 1 second dampener applied to the raw values that are set. The engineered values also have a dampener applied with the number of seconds a user adjustable parameter stored in the sensor EEPROM. The maximum recommended sampling rate for read input registers used to obtain process values is 4 Hz (250ms). In some cases, for quite long cable lengths and/or with very many nodes it may be necessary to reduce the sampling rate to 2 Hz (500ms), 1 Hz (1,000ms) or even 0.5 Hz (2,000ms) if timeouts are occurring on the network.

IOTRONTM pH / ORP / ISE / DO / Conductivity Measurement Products Lines

IMPLEMENTATION APPROACH #1 - OBTAIN PROCESS VALUES ONLY

Access to **READ** core process values is gained through MODBUS function code (04) READ INPUT REGISETERS. Four values are available when requesting process values. Values can be called starting at any index and any number of values can be requested so long as it does not exceed the total number available from the starting index of the call. Values are sent in succession from the starting index of the call. If only one value is requested, then just the starting index is sent.

#	Name	Range	Engineered Values	Register	Index
1	Measurement pH	018,000	-2.000 to +16.000	30001	0
1	Measurement Standard Range ORP (mV)	020,000	-1,000.0 to +1,000.0	30001	0
1	Measurement Wide Range ORP (mV)	020,000	-2,000.0 to +2,000.0	30001	0
1	Measurement Dissolved Oxygen (DO) - ppm	015,000	0.00 to 150.00	30001	0
2	Measurement °C	02,500	-40.0 to +210.0 °C	30002	1
3	Measurement raw mV for pH & Std ORP	5,00045,000 *	-1,000.0 to +1,000.0	30003	2
3	Measurement raw mV for Wide Range ORP	5,00045,000 *	-2,000.0 to +2,000.0	30003	2
3	Measurement raw mV for Dissolved Oxygen	025,000	+0.00 to +250.00	30003	2
4	Measurement raw °C	02,500 **	-40.0 to +210.0 °C	30004	3
5	Measurement DO - % Saturation with Salinity	015,000	0.0 to 1,500.0 %	30005	4
6	Measurement DO - % Saturation w/o Salinity	015,000	0.0 to 1,500.0 %	30006	5

i.e. <node> <code> <index> <#values>

* When raw mV is below engineered value limit, then this is indicated by the integer 4,999 being sent for this index. * When raw mV is above engineered value limit, then this is indicated by the integer 45,001 being sent for this index.

** When raw °C is above engineered value limit, then this is indicated by the integer 45,001 being sent for this index.

For HiQDT-pH Sensors (Default Node Address 1):

Value 1: Calibrated & Temperature Compensated pH

Range is -2.000 to +16.000 sent as 0 to 18,000 (unsigned integer) yielding resolution of 0.001pH Value 3: Absolute raw mV values

Range is -1,000.0 to +1,000.0 mV sent as 25,000 ± 20,000 (unsigned integer) yielding resolution of 0.05mV

For HiQDT-ORP Standard Range Sensors (Default Node Address 2):

Value 1: Calibrated Standard ORP mV

Range is -1,000.0 to +1,000.0 sent as 0 to 20,000 (unsigned integer) yielding resolution of 0.1mV Value 3: Absolute raw mV values

Range is -1,000.0 to +1,000.0 mV sent as 25,000 ± 20,000 (unsigned integer) yielding resolution of 0.05mV

For HiQDT-ORP Wide Range Sensors (Default Node Address 3):

Value 1: Calibrated Wide Range ORP mV Range is -2,000.0 to +2,000.0 sent as 0 to 20,000 (unsigned integer) yielding resolution of 0.2mV Value 3: Absolute raw mV values Range is -2,000.0 to +2,000.0 mV sent as 25,000 ± 20,000 (unsigned integer) yielding resolution of 0.1mV

For HiQDT-DO Sensors (Default Node Address 4):

Value 1: Calibrated & Temperature Compensated Dissolved Oxygen ppm Range is 0.00 to 150.00 sent as 0 to 15,000 (unsigned integer) yielding resolution of 0.01ppm Value 3: Absolute raw mV values Range is 0.00 to 250.00 mV sent as 0 to 25,000 (unsigned integer) yielding resolution of 0.01mV Value 5: Percent (%) Saturation Dissolved Oxygen for Measurement w/ Temperature, mmHg & Salinity Corrections – **Computed Unit** Value 6: Percent (%) Saturation Dissolved Oxygen for Calibration with Temperature & mmHg Corrections Only – **Computed Unit** Range is 0.0 to 1,500.00 sent as 0 to 15,000 (unsigned integer) yielding resolution of 0.1%

For ALL HiQDT Sensor Types:

Value 2: Calibrated Temperature Range is -40.0 to +210.0 °C sent as 0 to 2,500 (unsigned integer) yielding resolution of 0.1 °C Value 4: Absolute Raw Temperature Range is -40.0 to +210.0 °C sent as 0 to 2,500 (unsigned integer) yielding resolution of 0.1 °C

Note for Sensor Type #1: pH values should be rounded from the received three decimal places (0.001pH resolution) down to two decimals places (0.01pH resolution) to ensure that only significant figures are shown and/or recorded.

Note for Sensor Types #2 & #3: ORP values should be rounded from the receive one decimal place (0.1mV/0.2mV) resolution) down to whole mV units (1mV resolution) to ensure only significant figures are shown and/or recorded.

Note for Sensor Types #1, #2 & #3: If Index 4 or 5 (registers 30005 & 30006) is called then dummy value of 0 will be returned.

Please see Appendix 1 for MODBUS Poll screenshots obtaining these values for pH sensor type as an example

2

Advanced Sensor Technologies, Inc. U.S.A. Website: www.astisensor.com IOTRON[™] Trademark of ASTI

IMPLEMENTATION APPROACH #2 - OBTAIN ALL READ-ONLY VALUES

Access to user parameters, user statistics and system parameters is gained through the MODBUS function code (03) READ HOLDING REGISTERS. Values can be called starting at any index and any number of values can be requested so long as it does not exceed the total number available from the starting index of the call. Values are sent in succession from the starting index of the call. If only one value is requested, then just the starting index is sent.

The values in the table below are referred to as user parameters. Seventeen values are available.

#	Name	Range	Engineered Units & Values	Register	Index
1	Offset for pH measurement (A.P.)	05,000	0 = -250.0 mV and $5,000 = +250.0$ mV	40001	0 **
1	Offset for Standard ORP measurement	05,000	0 = +250.0mV and 5,000 = -250.0mV	40001	0 **
1	Offset for Wide ORP measurement	010,000	0 = +500.0mV and 10,000 = -	40001	0 **
			500.0mV		
2	Slope low pH measurement	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40002	1*
2	Slope for Dissolved Oxygen measurement	70600	70 = 0.70 mV and 600 = 6.00 mV	40002	1*
3	Slope high pH measurement	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40003	2 ***
4	Offset oC measurement	0500	0 = -25.0 °C and 500= +25.0 °C	40004	3
5	Step change for pH, ORP & Wide ORP	05	0=0.05, 1=0.10, 2=0.20, 3=0.50,	40005	4
			4=1.0, 5=2.0 Units are mV		
5	Salinity for Dissolved Oxygen	0500	0 = 0.00 and 500 = 50.0 PSU	40005	4
6	Temp coefficient for pH compensation	0999	μV (microvolts)	40006	5 *
6	Air Pressure for Dissolved Oxygen	600900	600 = 600 and 900 = 900 mmHg	40006	5
7	Dampener	09	0=1, 1=2, 2=3, 3=4, 4=5, 5=8, 6=10,	40007	6
			7=15, 8=20, 9=30 Units are Seconds		
8	Output delay	09	0=1, 1=2, 2=3, 3=4, 4=5, 5=8, 6=10,	40008	7
			7=15, 8=20, 9=30 Units are Seconds		
9	Modbus baudrate	01	0 = 9,600 kbps and 1 = 19,200 kbps	40009	8
10	Reference auto calibration pH offset	01,800	0 = -2.00 pH and 1,800 = +16.00 pH	40010	9**
10	Reference auto cal Standard ORP offset	02,000	0 = -1,000 and 2,000 = +1,000 mV	40010	9**
10	Reference auto cal Wide ORP offset	04,000	0 = -2,000 and 4,000 = +2,000 mV	40010	9**
11	Reference auto calibration slope low	0900	0 = -2.00 pH and 900 = +7.00 pH	40011	10 *
11	Reference autocal dissolved oxygen	4001,800	400 = 4.00 and 1,800 = 18.00 ppm	40011	10
12	Reference auto calibration slope high	9001,800	900 = +7.00 pH & 1,800 = +16.00 pH	40012	11 ***
13	Reference auto calibration oC offset	02,500	0 = -40.0 °C and 2,500= +210.0 °C	40013	12
14	Hours since mV offset adjustment	065,535	Units are Hours (Max 2,730 days)	40014	13
15	Hours since slope low pH/DO adjustment	065,535	Units are Hours (Max 2,730 days)	40015	14 *
16	Hours since slope high adjustment	065,535	Units are Hours (Max 2,730 days)	40016	15 ***
17	Hours since oC offset adjustment	065,535	Units are Hours (Max 2,730 days)	40017	16

i.e. <node> <code> <index> <#values>

* N/A for ORP. Value is sent but is invalid.

** N/A for Dissolved Oxygen. Value is sent but is invalid. Galvanic DO cell requires no offset calibration.

*** N/A for ORP nor Dissolved Oxygen. Value is sent but is invalid.

Please see Appendix 2A for MODBUS Poll screenshots obtaining these values for the pH sensor type

#	Name	Range	Engineered Units & Values	Register	Index
1	ASTI: manufacture date (Year)	0099	00 = 2000 and 99 = 2099	40021	20
2	ASTI: manufacture date (Month)	0112	1 = January12 = December	40022	21
3	ASTI: manufacture date (Date)	0131	Day of Month	40023	22
4	Serial Number (year)	0099	00 = 2000 and 99 = 2099	40024	23
5	Serial Number (month)	0112	1 = January12 = December	40025	24
6	Serial Number (letter)	018	0=A, 1=b, 2=C, 3=d, 4=E, 5=F, 6=g,	40026	25
			7=H, 8=i, 9=J, 10=L, 11=n, 12=o,		
			13=P, 14=r, 15=S, 16=t, 17=U, 18=Y		
7	Serial Number (#)	0099	Unique Identifier in Alpha Block	40027	26
8	Item Number	065,535	Unique Identifier for	40028	27
			Sensor Configuration & Options		
9	Sensor: Min. temperature in use	02,500	0 = -40.0 °C and 2,500= +210.0 °C	40029	28
10	Sensor: Max temperature in use	0.2,500	0 = -40.0 °C and 2,500= +210.0 °C	40030	29
11	Sensor: Total days in use	065,535	Units are Hours (Max 2,730 days)	40031	30

The values in the table below are referred to as user statistics. Eleven (11) values are available.

i.e. <node> <code> <index> <#values>

Please see Appendix 2B for MODBUS Poll screenshots obtaining these values for the pH sensor type

The values in the table below are referred to as system parameters. Thirteen (13) values are available.

#	Name	Range	Engineered Units & Values	Register	Index
1	Туре	0255	1 = pH, $2 = Standard ORP$,	40036	35
			3 = Wide Range ORP,		
			4 = Dissolved Oxygen		
2	SW revision	0255	Check factory for most current rev #	40037	36
3	Production date (Year)	099	00 = 2000 and 99 = 2099	40038	37
4	Production date (Month)	112	1 = January12 = December	40039	38
5	Production date (Date)	131	Day of Month	40040	39
6	Factory cal. (mV gain)	1255	N/A (Factory Designation Only)	40041	40
7	Factory cal. (oC offset)	1255	N/A (Factory Designation Only)	40042	41
8	Factory cal. (oC gain)	0255	N/A (Factory Designation Only)	40043	42
9	Factory cal. (mV offset)	165,535	N/A (Factory Designation Only)	40044	43
10	ASTI cal for pH & Standard ORP	05,000	0 = -250.0 mV and $5,000 = +250.0$ mV	40045	44**
	(mV offset)				
10	ASTI cal for Wide ORP	010,000	0 = -500.0mV and 10,000 = +500.0mV	40045	44**
	(mV offset)				
11	ASTI cal. (slope low)	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40046	45*
12	ASTI cal. (slope high)	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40047	46***
13	ASTI cal. (oC offset)	0500	0 = -25.0 °C and 500= +25.0 °C	40048	47

i.e. <node> <code> <index> <#values>

* N/A for ORP. Value is sent but is invalid.

** N/A for Dissolved Oxygen. Value is sent but is invalid. Galvanic DO cell requires no offset calibration.

*** N/A for ORP nor Dissolved Oxygen. Value is sent but is invalid.

Please see Appendix 2C for MODBUS Poll screenshots obtaining these values for the pH sensor type

IOTRONTM pH / ORP / ISE / DO / Conductivity Measurement Products Lines

IMPLEMENTATION APPROACH #3 WRITE ALL USER PARAMETERS & REGISTERS

Access for all **WRITE** type parameters is gained through MODBUS function code (16) preset multiple registers. Values can be written starting at any index and any number of values can be written so long as it does not exceed the total number of parameters that are available from the starting index of the call. Values are to be written in succession from the starting index of the call. If only one value is to be written, then just the value of the starting index is written.

#	Name	Range	Engineered Units & Values	Register	Index
1	Offset for pH measurement (A.P.)	05,000	0 = -250.0 mV and $5,000 = +250.0$ mV	40001	0 **
1	Offset for Standard ORP measurement	05,000	0 = +250.0mV and 5,000 = -250.0mV	40001	0 **
1	Offset for Wide ORP measurement	010,000	0 = +500.0 mV and $10,000 = -500.0$ mV	40001	0 **
2	Slope low pH measurement	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40002	1*
2	Slope for Dissolved Oxygen measurement	70600	70 = 0.70 mV and 600 = 6.00 mV	40002	1*
3	Slope high pH measurement	6001,800	600 = 30.0mV and 1,800 = 90.0mV	40003	2 ***
4	Offset oC measurement	0500	0 = -25.0 °C and 500= +25.0 °C	40004	3
5	Step change for pH, ORP & Wide ORP	05	0=0.05, 1=0.10, 2=0.20, 3=0.50,	40005	4
			4=1.0, 5=2.0 Units are mV		
5	Salinity for Dissolved Oxygen	0500	0 = 0.00 and $500 = 50.0$ PSU	40005	4
6	Temp coefficient for pH compensation	0999	μV (microvolts)	40006	5 *
6	Air Pressure for Dissolved Oxygen	600900	600 = 600 and 900 = 900 mmHg	40006	5
7	Dampener	09	0=1, 1=2, 2=3, 3=4, 4=5, 5=8, 6=10,	40007	6
			7=15, 8=20, 9=30 Units are Seconds		
8	Output delay	09	0=1, 1=2, 2=3, 3=4, 4=5, 5=8, 6=10,	40008	7
			7=15, 8=20, 9=30 Units are Seconds		
9	Modbus baudrate	01	0 = 9,600 kbps and 1 = 19,200 kbps	40009	8
10	Reference auto calibration pH offset	01,800	0 = -2.00 pH and 1,800 = +16.00 pH	40010	9**
10	Reference auto cal Standard ORP offset	02,000	0 = -1,000 and 2,000 = +1,000 mV	40010	9**
10	Reference auto cal Wide ORP offset	04,000	0 = -2,000 and 4,000 = +2,000 mV	40010	9**
11	Reference auto calibration slope low	0900	0 = -2.00 pH and 900 = +7.00 pH	40011	10 *
11	Reference autocal dissolved oxygen	4001,800	400 = 4.00 and 1,800 = 18.00 ppm	40011	10
12	Reference auto calibration slope high	9001,800	900 = +7.00 pH & 1,800 = +16.00 pH	40012	11 ***
13	Reference auto calibration oC offset	02,500	0 = -40.0 °C and 2,500= +210.0 °C	40013	12
14	Hours since mV offset adjustment	065,535	Units are Hours (Max 2,730 days)	40014	13
15	Hours since slope low pH/DO adjustment	065,535	Units are Hours (Max 2,730 days)	40015	14 *
16	Hours since slope high adjustment	065,535	Units are Hours (Max 2,730 days)	40016	15 ***
17	Hours since oC offset adjustment	065,535	Units are Hours (Max 2,730 days)	40017	16

Commands

Name	Register	Index	Value
Reset calibrations to ASTI settings	40148	147	118
Reset address to type	40148	147	199
Autocalibration Offset for pH & ORP	40198	197	N/A ****
Autocalibration Offset oC	40199	198	N/A ****
Autocalibration Slope for pH & DO	40200	199 *	N/A ****

* N/A for ORP. Value is sent but is invalid.

** N/A for Dissolved Oxygen. Value is sent but is invalid. Galvanic DO cell requires no offset calibration.

*** N/A for ORP nor Dissolved Oxygen. Value is sent but is invalid.

**** Autocalibration is invoked by either writing value to this register or else just calling index without sending any value

IMPORTANT NOTE ABOUT SLOPE CALIBRATION FOR pH SENSORS:

Before using "Autocalibration Slope" command for pH sensor you MUST previously performed an offset calibration.

GENERAL NOTE AUTOCALIBRATION:

The index defining the value to which the autocalibration will be performed should always be written BEFORE invoking command **(except for DO sensors that write their own reference value).** The value of the measured parameter will be adjusted to the reference value defined for the autocalibration after the delay to which the dampener is currently set.

Advanced Sensor Technologies, Inc. U.S.A. Website: www.astisensor.com IOTRON[™] Trademark of ASTI

For HiQDT-pH Sensors:

Offset Adjust Temperature Calibrated Temperature Value

Limit ±25.0 °C * from raw value

The temperature to which reading is adjusted is sent as 0 to 2,500 corresponding to -40.0 to +210.0 °C (FC16 Index 12)

Offset Adjust pH Value Asymmetric Potential **Calibrated pH Value for A.P. Limit ±250 mV * from default** *The pH value to which reading is adjusted is sent as 0 to 1,800 corresponding to -2.00 to +16.00 pH (FC16 Index 9)*

Adjust Acidic Slope This slope used when pH less than 7 Calibrated pH Value - Acid Slope Limit 30 to 90 mV per pH unit

The pH value to which reading is adjusted is sent as 0 to 1,800 corresponding to -2.00 to +16.00 pH (FC16 Index 10)

Adjust Alkaline Slope This slope used when pH greater than 7

Calibrated pH Value - Base Slope Limit 30 to 90 mV per pH unit *The pH value to which reading is adjusted is sent as 0 to 1,800 corresponding to -2.00 to +16.00 pH (FC16 Index 11)*

NOTE: The HiQDT-pH sensor will automatically assign the slope calibration call as acidic or alkaline based upon when the pH value to be adjusted is less than or greater than 7

For HiQDT-ORP Standard Range ORP Sensors:

Offset Adjust Temperature **Calibrated Temperature Value Limit ±25.0 °C * from raw value** *The temperature to which reading is adjusted is sent as 0 to 2,500 corresponding to -40.0 to +210.0 °C (FC16 Index 12)*

Offset Adjust mV Value **Calibrated mV Value Std ORP Limit ±250 mV * from default** *The mV value to which reading is adjusted is sent as 0 to 2,000 corresponding -1,000 to +1,000 mV (FC16 Index 9)*

For HiQDT-ORP Wide Range ORP Sensors:

Offset Adjust Temperature **Calibrated Temperature Value Limit ±25.0 °C * from raw value** *The temperature to which reading is adjusted is sent as 0 to 2,500 corresponding to -40.0 to +210.0 °C (FC16 Index 12)*

Offset Adjust mV Value **Calibrated mV Value Wide ORP Limit ±250 mV * from default** *The mV value to which reading is adjusted is sent as 0 to 4,000 corresponding -2,000 to +2,000 mV (FC16 Index 9)*

For HiQDT-DO Dissolved Oxygen Sensors:

Offset Adjust Temperature **Calibrated Temperature Value | Limit ±25.0** °C * from raw value The temperature to which reading is adjusted is sent as 0 to 2,500 corresponding to -40.0 to +210.0 °C (FC16 Index 12)

Adjust Slope

Calibrated Dissolved Oxygen Value at 100% Saturation Condition | Limit 0.70 to 6.00 mV per DO ppm unit The DO value to which reading is adjusted is sent as 400 to 1,800 corresponding to 4.00 to 18.00 DO ppm @ 100% (FC16 Index 10)

Last Modified June 29, 2019 | Revision 11

APPENDIX 1 - READ INPUT REGISTERS MODBUS POLL SCREENSHOTS

Read/Write Definition
Slave ID: 1 OK
Function: 04 Read Input Registers (3x) <
Address: 0 Protocol address. E.g. 30011 -> 10
Quantity: 4
Scan Rate: 1000 [ms] Apply
Disable Disable Read/Write Disabled Disable on error Read/Write Once
View Rows O 10 O 20 O 50 O 100 O Fit to Quantity
Hide Alias Columns PLC Addresses (Base 1) Address in Cell Enron/Daniel Mode

	Alias	3x0001
1	Measurement pH	6057
2	Measurement °C	615
3	Measurement raw mV for pH	28201
4	Measurement raw °C	616

ENGINEERED VALUES FROM INTEGER VALUES SHOWN FROM READ INPUT REGISTERS:

#	Name	Integer Value	Engineered Value	Register	Index
1	Measurement pH	6057	4.057	30001	0
2	Measurement °C	615	21.5	30002	1
3	Measurement raw mV for pH	28201	160.05	30003	2
4	Measurement raw °C	616	21.6	30004	3

Note: You must determine the sensor type before being able to assign engineered values for the read input registers. The sensor type is defined by read input registers function call index 35 (register 40036).

APPENDIX 2A - READ HOLDING REGISTERS MODBUS POLL SCREENSHOTS

4x0001	Alias	
2358	Offset mV measurement	1
1196	Slope low pH measurement	2
1105	Slope high pH measurement	3
251	Offset oC measurement	4
5	Stepchange	5
198	Temperature coefficient for pH compensation	6
6	Dampener	7
0	Output delay	8
1	Modbus baudrate	9
900	Reference auto calibration pH offset	10
600	Reference auto calibration slope low	11
1205	Reference auto calibration slope high	12
650	Reference auto calibration oC offset	13
0	Hours since pH offset adjustment	14
0	Hours since slope low pH adjustment	15
0	Hours since slope high adjustment	16
0	Hours since oC offset adjustment	17

Read/Write Definition X						
Slave ID: 0K						
Function: 03 Read Holding Registers (4x) V Cancel						
Address: 0 Protocol address. E.g. 40011 -> 10						
Quantity: 17						
Scan Rate: 1000 [ms] Apply						
Disable						
Disable on error <u>R</u> ead/Write Once						
View Rows O 10 O 20 O 50 O 100 O Fit to Quantity						
Hide Alias Columns PLC Addresses (Base 1) Address in Cell Enron/Daniel Mode						

ENGINEERED VALUES FROM INTEGER VALUES SHOWN FROM READ INPUT REGISTERS:

#	Name	Integer Value	Engineered Value	Register	Index
1	Offset pH/mV measurement	2358	-14.2 mV	40001	0
2	Slope low pH measurement	1196	59.80mV per pH unit	40002	1
3	Slope high pH measurement	1105	55.25mV per pH unit	40003	2
4	Offset oC measurement	251	0 = -25.0 °C and 500= +25.0 °C	40004	3
5	Step change	5	2.0 mV	40005	4
6	Temp coefficient for pH compensation	198	198µV (microvolts)	40006	5
7	Dampener	6	10 seconds	40007	6
8	Output delay	0	1 second	40008	7
9	Modbus baudrate	1	19,200 kbps	40009	8
10	Reference auto calibration pH offset	900	+7.00 pH	40010	9
11	Reference auto calibration slope low	600	+4.00 pH	40011	10
12	Reference auto calibration slope high	1205	+10.05 pH	40012	11
13	Reference auto calibration oC offset	650	+25.0 °C	40013	12
14	Hours since mV offset adjustment	0	0 hours	40014	13
15	Hours since slope low pH adjustment	0	0 hours	40015	14
16	Hours since slope high adjustment	0	0 hours	40016	15
17	Hours since oC offset adjustment	0	0 hours	40017	16

APPENDIX 2B - READ HOLDING REGISTERS MODBUS POLL SCREENSHOTS

Read/Write Definition X		Alias	4x0021
Slave ID: 1 OK	21	ASTI: manufacture date (Year)	18
	22	ASTI: manufacture date (Month)	9
Function: 03 Read Holding Registers (4x) V Cancel	23	ASTI: manufacture date (Date)	22
Address: 20 Protocol address. E.g. 40011 -> 10	24	Serial Number (year)	18
Quantity: 11	25	Serial Number (month)	9
Scan Rate: 1000 [ms] Apply	26	Serial Number (letter)	1
Disable Read/Write <u>D</u> isabled	27	Serial Number (#)	0
Disable on error <u>R</u> ead/Write Once	28	Item Number	1418
View	29	Sensor: Min. temperature in use	609
Rows ◯ 10 ◯ 20 ◯ 50 ◯ 100 ◉ Fit to Quantity	30	Sensor: Max temperature in use	650
Hide Alias Columns PLC Addresses (Base 1)	31	Sensor: Total hours in use	2
Address in Cell Enron/Daniel Mode			

ENGINEERED VALUES FROM INTEGER VALUES SHOWN FROM READ INPUT REGISTERS:

#	Name	Integer Value	Engineered Value	Register	Index
1	ASTI: manufacture date (Year)	18	2018	40021	20
2	ASTI: manufacture date (Month)	9	September	40022	21
3	ASTI: manufacture date (Date)	22	22	40023	22
4	Serial Number (year)	18	2018	40024	23
5	Serial Number (month)	9	September	40025	24
6	Serial Number (letter)	0	А	40026	25
7	Serial Number (#)	0	00	40027	26
8	Item Number	1418	1418	40028	27
9	Sensor: Min. temperature in use	609	+20.9 °C	40029	28
10	Sensor: Max temperature in use	650	+25.0 °C	40030	29
11	Sensor: Total days in use	2	2 hours	40031	30

Note for Serial Number:

Complete serial number is typically shown as follow string of indexes <23>.<24>-<25>.<26>

Based upon the values returned for these indexes in the example above the serial number would be shown as: 18.09-A.00 The serial number is heat-shrink sealed near the end of sensor cable in the format as detailed above.

APPENDIX 2C - READ HOLDING REGISTERS MODBUS POLL SCREENSHOTS

Read/Write Definition X					
Slave ID:	1		OK		
Function:	03 Read Holding Re	gisters (4x) 🖂	Cancel		
Address:	35 Protocol address. E.g. 40011 -> 10				
Quantity:	13				
Scan Rate:	Scan Rate: 1000 [ms] Apply				
Disable Read/Write Disabled Disable on error					
View Rows ◯ 10 ◯ 20 ◯ 50 ◯ 100 ◉ Fit to Quantity					
	lias Columns ss in Cell	_	esses (Base 1) aniel Mode		

	Alias	4x0036
36	Туре	1
37	SW revision	1
38	Production date (Year)	18
39	Production date (Month)	9
40	Production date (Date)	6
41	Factory cal. (mV gain)	196
42	Factory cal. (oC offset)	57
43	Factory cal. (oC gain)	227
44	Factory cal. (mV offs et)	16233
45	ASTI cal. (mV offset)	2500
46	ASTI cal. (slope low)	1183
47	ASTI cal. (slope high)	1183
48	ASTI cal. (oC offset)	250

ENGINEERED VALUES FROM INTEGER VALUES SHOWN FROM READ INPUT REGISTERS:

#	Name	Integer Value	Engineered Value	Register	Index
1	Туре	1	pН	40036	35
2	SW revision	1	1	40037	36
3	Production date (Year)	18	2018	40038	37
4	Production date (Month)	9	September	40039	38
5	Production date (Date)	6	6	40040	39
6	Factory cal. (mV gain)	196	N/A (Factory Designation Only)	40041	40
7	Factory cal. (oC offset)	57	N/A (Factory Designation Only)	40042	41
8	Factory cal. (oC gain)	227	N/A (Factory Designation Only)	40043	42
9	Factory cal. (mV offset)	16233	N/A (Factory Designation Only)	40044	43
10	ASTI cal. (mV offset)	2500	0.0 mV	40045	44
11	ASTI cal. (slope low)	1183	59.15 mV per pH unit	40046	45
12	ASTI cal. (slope high)	1183	59.15 mV per pH unit	40047	46
13	ASTI cal. (oC offset)	250	0.0 °C	40048	47